
Carnegie Mellon
Software Engineering Institute

Documenting
Software
Architectures
In an Agile World

Paul Clements
James Ivers
Reed Little
Robert Nord
Judith Stafford

July 2003

TECHNICAL NOTE
CMU/SEI-2003-TN-023

20031202 101

CamegieMelloii
Software Engineering Institute
Pittsburgh, PA 15213-3890

Documenting
Software
Arcliitectures
in an Agile World

CMU/SEi-2003-TN-023

Paul Clements
James Ivers
Reed Little
Robert Nord
Judith Stafford

July 2003

Architecture Tradeoff Analysis initiative

Unlimited distribution subject to the copyright.

The Software Engineering Institute is a federally funded research and development center sponsored
by the U.S. Department of Defense.

Copyright 2003 by Carnegie Mellon University.

NO WARRANTY

THIS CARNEGIE MELLON UNIVERSITY AND SOFTWARE ENGINEERING INSTITUTE
MATERIAL IS FURNISHED ON AN "AS-IS" BASIS. CARNEGIE MELLON UNIVERSITY
MAKES NO WARRANTIES OF ANY KIND, EITHER EXPRESSED OR IMPLIED, AS TO ANY
MATTER INCLUDING, BUT NOT LIMITED TO, WARRANTY OF FITNESS FOR PURPOSE
OR MERCHANTABILITY, EXCLUSIVITY, OR RESULTS OBTAINED FROM USE OF THE
MATERIAL. CARNEGIE MELLON UNIVERSITY DOES NOT MAKE ANY WARRANTY OF
ANY KIND WITH RESPECT TO FREEDOM FROM PATENT, TRADEMARK, OR COPYRIGHT
INFRINGEMENT.

This work was created in the performance of Federal Government Contract Number F19628-00-C-
0003 with Carnegie Mellon University for the operation of the Software Engineering Institute, a
federally funded research and development center. The Government of the United States has a royalty-
free government-purpose license to use, duplicate, or disclose the work, in whole or in part and in any
manner, and to have or permit others to do so, for government purposes pursuant to the copyright
license under the clause at 252.227-7013.

Internal use. Permission to reproduce this document and to prepare derivative works from this
document for internal use is granted, provided the copyright and "No Warranty" statements are
included with all reproductions and derivative works.

External use. Requests for permission to reproduce this document or prepare derivative works of this
document for external and commercial use should be addressed to the SEI Licensing Agent.

Use of any trademarks in this report is not intended in any way to infringe on the rights of the
trademark holder.

For information about purchasing paper copies of SEI reports, please visit the publications portion of
our Web site (http://www.sei.cmu.edu/publications/pubweb.html).

Table of Contents

Abstract v

1 Introduction 1

2 The V&B Approach 2

3 Agile Software Development 5

4 Examining the V&B and Agile Approaches 6

5 Reconciling the V&B and Agile Approaches 9

6 Conclusions 12

References 13

CMU/SEI-2003-TN-023

CMU/SEI-2003-TN-023

List of Figures

Figure 1: V&B Outline for Documenting a View 3

Figure 2: V&B Outline for Documentation Beyond Views 4

Figure 3: The Manifesto for Agile Software Development [Agile Alliance 02a] 5

CMU/SEI-2003-TN-023

iv CMU/SEI-2003-TN-023

Abstract

This report compares the Software Engineering Institute's Views and Beyond approach for
documenting software architectures with the documentation philosophy embodied in agile
software-development methods. This report proposes an approach for capturing architecture
information in a way that is consistent with agile methods.

CMU/SEI-2003-TN-023

yj CMU/SEI-2003-TN-023

1 Introduction

This report is the fifth in a series on documenting software architectures.* The Software Engi-
neering Institute (SEI^'^)^ has developed a comprehensive approach to capturing architectural
design decisions, loosely called the Views and Beyond (V&B) approach. This technical note
will explore the relationship between the V&B approach (which prescribes capturing a rich set
of information about the architecture) and so-called "agile" approaches (which emphasize a
minimalist, "just in time" approach to documentation).

The previous four reports in this series dealt with documenting a layered architecture [Bachmann 00], documenting software
tiehavlor [Bachmann 02a] and interfaces [Bachmann 02b], and the overall stnjcture of an architecture documentation pack-
age [Bachmann 01]. The previous reports culminated in the publication of a tiool< on software architecture documentation in
the Addison-Wesley SEI Series on Software Engineering [Clements 02].

SEI is a service maric of Carnegie Mellon University.

CMU/SEI-2003-TN-023

2 The V&B Approach

The fundamental principle of the V&B approach (as stated in the book titled Documenting
Software Architectures: Views and Beyond) is that documenting a software architecture is a
matter of documenting the relevant views and then documenting the information that applies
across the views [Clements 02]. View-based documentation has emerged as the "best of
breed" approach for dealing with software architectures. Some practitioners prescribe a fixed
set of views. The Rational Unified Process (RUP), for example, is built on Kruchten's 4+1
approach to creating and capturing software architectures [Kruchten 00]. The Siemens Four
Views approach is another example of an approach that suggests a standard view set
[HofmeisterOO].

Recently, however, these approaches have been generalized because (as David Pamas pointed
out decades ago [Pamas 01]) software systems are characterized by an almost unlimited set of
distinct structures that we capture with views. This allows architects the freedom to choose the
views that are most relevant to the intended uses of the architecture—^for example, perfor-
mance engineering, change impact analysis, or implementation guidelines. The EEEE recom-
mended best practice for documenting architectures of software-intensive systems (IEEE Std
1471-2000) recognizes this trend by prescribing the conscious selection of views based on
stakeholders' concerns [IEEE 00]. The V&B approach also embraces stakeholder-based view
selection, but extends the concept to recognize that documentation beyond views is also essen-
tial to provide holistic insight into the overall design approach embodied by the architecture.

Figures 1 and 2 give standard outlines for documenting an architectural view and for docu-
menting information beyond views, respectively [Clements 02, Ch. 10].

CMU/SEI-2003-TN-023

Views

Section 1. Primary Presentation of the View

OR

T\
Textual version
of the primary
presentation

Section 2. Eiement Catalog
Section 2.A Elements and Their Properties
Section 2.B Relations and Their Properties
Section 2.C Element interfaces
Section 2.D Element Behavior

Section 3. Context Diagram

Section 4. Variability Guide
Section 5. Architecture Background

Section 5.A Design Rationale
Section 5.B Analysis Results
Section 5.C Assumptions

Section 6. Glossary of Terms
Section 7. Other Information

Figure 1: V&B Outline for Documenting a View

CMU/SEI-2003-TN-023

Template for Documentation Beyond Views

How the documentation is organized:
Section 1. Documentation roadmap
Section 2. View template

What the architecture Is:
Section 3. System overview
Section 4. Mapping between views
Section 5. Directory
Section 6. Glossary and acronym list

Why the architecture is the way It is:
Section 7. Background, design constraints, and rationale

Figure 2: V&B Outline for Documentation Beyond Views

CMU/SEI-2003-TN-023

3 Agile Software Development

"Agile" refers to a paradigm of software development that emphasizes rapid and flexible
development and de-emphasizes project and process infrastructure for their own sake. Figure 3
shows the so-called "manifesto" for agile software development, as articulated by the Agile
Alliance, a non-profit organization "dedicated to promoting the concepts of agile software
development and helping organizations adopt those concepts" [Agile Alliance 02b]. The man-
ifesto includes among its signatories such luminaries as Kent Beck, Alistair Cockbum, Martin
Fowler, Steve Mellor, and others.

A full treatment of agile methods is beyond the scope of this report, but books by Cockbum
[Cockbum 02] and Beck [Beck 00] are foundation works.

We are uncovering better ways of developing software by doing it and helping
others do it. Through this work we have come to value:

• Individuals and interactions over processes and tools

• Working software over comprehensive documentation

• Customer collaboration over contract negotiation

• Responding to change over following a plan

That is, while there is value in the items on the right, we value the items on the left
more.

Figure 3: The Manifesto for Agile Software Development [Agile Alliance 02a]

CMU/SEI-2003-TN-023

Examining the V&B and Agile
Approaclies

Clearly the V&B and agile paradigms start out from different philosophical vantage points.
Can they be reconciled? If you want to use an agile approach for developing a system, is the
V&B approach (or for that matter, any approach) for documenting software architectures to be
summarily dismissed?

To answer this question, let us begin by focusing on the key underpinnings of each approach.
On the agile side, the passage of interest with respect to the subject of this report is the one that
says, "A working system is valued over comprehensive documentation." In addition, one of
the stated principles of agile development is that "the most efficient and effective method of
conveying information to and within a development team is face-to-face conversation" [Agile
Alliance 02c]. On the V&B side, it is useful to examine the three fundamental purposes behind
architecture documentation:

1. Architecture serves as a means of education to introduce people to the system. Those peo-
ple might be new members of the team, external analysts, or new architects.

2. Architecture serves as a primary vehicle for communication among stakeholders. An
architecture's precise use as a communication vehicle depends on which stakeholders are
doing the communicating. For instance, maintainers will use the documentation to mea-
sure the impact of a change and to identify the areas in which to begin work. Testers and
integrators will use it to understand the desired black-box behavior of the system's ele-
ments and how they should fit together.

3. Architecture serves as the basis for system analysis. To support that analysis, the architec-
ture documentation must contain the information necessary for the particular type of anal-
ysis being performed.

Agile developers discount these uses. Educating new people, they would say, is done by talk-
ing to the old people. Communication among stakeholders, they would say, is done through
face-to-face conversation. Similarly, analysts can find out what they need to know simply by
asking.

It doesn't take a vivid imagination to think of project scenarios in which relying on face-to-
face communication is infeasible. Think of a performance analyst asking someone in the hall-
way what all of a system's 350 process deadlines are, so that the analyst can begin to compute

CMU/SEI-2003-TN-023

schedulability. Or think of a maintainer, who has inherited the system years after all the origi-
nal developers have left, trying to understand where to begin. On a project involving hundreds
of developers, do you really want your architects to spend all of their time answering the same
questions over and over? Or would you rather let documentation serve that purpose, while also
making sure the developers get the same answer every time?

In fact, agile development methods were invented for a particular context, and trying to apply
them outside of their realm is unwise. In particular, there is no evidence that agile methods
work for large, separately developed, long-lived systems that are turned over to different orga-
nizations for maintenance. In fact, the term maintenance is mentioned infrequently in the agile
literature.^

One of the leading forces behind the agile movement, Alistair Cockbum, has done a superb
job of explaining where the philosophy is and is not viable [Cockbum 02]. Life-critical sys-
tems, he says, are not feasible candidates for agile methods, nor are projects in which the team
members are not collocated. His own agile method. Crystal, has an experience base that stops
at about 40 participants [Cockbum 01]. Cockbum shows a graph whose x-axis is project size
and whose y-axis denotes a system's criticality. He says that agile methods are clearly more at
home in the lower left comer (small size projects on non-critical systems) of this space, and
much less so elsewhere (larger size projects on more critical systems).^

It is no coincidence that these more challenging regions are exactly where software architec-
ture itself plays its most critical role. One reason agile methods downplay architecture docu-
mentation is that they downplay architecture in favor of (at best) the detailed design of small
pieces or (more often) code. On the other hand, while the V&B approach is ostensibly about
architecture documentation, it brings with it the obligation to treat software architecture as a
central concept for the system under development.

It is tempting to use Cockbum's table to divide systems into two classes: agile-prone and
architecture-prone. But this is much too simplistic. On the one hand, many agile principles
have clear value and appeal on any project:

• giving highest priority to satisfying the customer through early and continuous delivery of
valuable software

• welcoming changing requirements, even late in development

Cockburn does, however, give future stakeholders their due. He writes, "Excessive documentation done too early delays the
delivery of the software. If, however, too little documentation is done too late, the person who knows something needed for
the next project has already vanished" (Cockbum 02].

Martin Fowler once asked if you would buy a Mazda Miata for its cargo carrying capability, implying that you would not use
agile methods for large projects.

CMU/SEI-2003-TN-023

delivering working software frequently, from every couple of weeks to every couple of
months, with a preference to the shorter timescale

business people and developers working together daily throughout the project

building projects around motivated individuals

Working software is the primary measure of progress.

continuous attention to technical excellence and good design

at regular intervals, reflecting on how to become more effective, then tuning and adjusting

accordingly

simplicity—the art of maximizing the amount of work not done

On the other hand, even small collocated non-life-critical systems can benefit from a disci-
plined approach to software architecture. Such an approach is the primary carrier of a system's
quality attributes, the basis for analysis, and the medium for communication to the system's
post-deployment stakeholders. The agile methods' oral tradition is insufficient for all these

purposes.

And so we seek a middle ground. If you are beginning a project that lives in Cockbum's agile
"sweet spot," you still might want to document your architecture to ensure the achievement of
its critical quality attributes, to enable analysis, and to speak to future generations. However, if
your project lives where the V&B approach holds sway, you still might want to try to bring
some agile philosophy to bear. In either case, the questions for you become

• What architecture documentation do I need to produce?

• Can the V&B approach help, and if so, how?

The next section addresses these questions.

CMU/SEI-2003-TN-023

Reconciling the V&B and Agile
Approaches

The V&B and agile philosophies agree strongly on a central point: If information isn't needed,
don't document it. All documentation should have an intended use and audience in mind, and
be produced in a way that serves both. One of the fundamental principles of technical docu-
mentation is "Write for the reader" [Clements 02]. That means understanding who will read
the documentation and how they will use it. If there is no audience, there is no need to produce
the documentation.

Architectural view selection is an example of applying this principle. The V&B approach, in
concert with IEEE Std 1471-2000, prescribes producing a view if and only if it addresses the
concerns of an explicitly identified stakeholder community.

Another central idea to remember is that documentation is not a monolithic activity that holds
up all other progress until it is complete. Clements and associates prescribe producing the doc-
umentation in prioritized stages to satisfy the needs of the stakeholders who need it now
[Clements 02, Ch. 9]. Cockbum expresses a similar idea this way: 'The correct amount of doc-
umentation is exactly that needed for the receiver to make her next move in the game. Any
effort to make the models complete, correct, and current past that point is a waste of money"
[Cockbum 02]. The trick is knowing who the receivers are and what moves they need to make.

With that in mind, the following is the suggested approach for producing architecture docu-
mentation using agile-like principles:

1. Begin by creating a skeleton document for a comprehensive view-based software architec-
ture document using the standard organization schemes shown in Figures 1 and 2. How-
ever, start with the outline only and leave the sections filled in initially with "to be
determined."

2. Using the view selection scheme of the V&B approach, decide which architectural views
you would want to produce, given enough resources [Clements 02, Ch. 9]^. Choosing a
view at this point does not obligate you to document it, but rather serves as a confirmation
that there is a stakeholder community who will find information in that view useful, no
matter how it is communicated. Choosing a view identifies a family of design decisions
that the architect needs to resolve and be able to express. Add outlines for the chosen
views to the outline you created in Step 1.

CMU/SEI-2003-TN-023

3. Annotate each section of the outline with a list of the stakeholders who should find the
information it contains of benefit. Don't forget stakeholders who might not have joined
the project yet, especially new hires, the maintenance staff, and successors to the current
architect(s).

4. For sections that have an important stakeholder constituency and that you can fill in
quickly using material at hand, do so. For example, a system overview available from
other sources can be put to use easily. Or, the whiteboard sketches that agile methods pre-
fer can be captured and put into the appropriate place(s) in the documentation skeleton.

5. Prioritize the completion of the remaining sections:

• If a section's constituency includes stakeholders for whom face-to-face conversation is
impractical or impossible (e.g., maintainers in an as-yet-unidentified organization), that
section will need to be filled in. If it includes only such stakeholders, its completion can be
deferred until the conclusion of the project's development phase.^

• If a section's constituency includes only stakeholders for whom face-to-face conversation
is practical and preferred, it may not need to be filled in. However, the architect may prefer
filling it in to repeatedly answering the same questions about it. If a question about infor-
mation in a particular section is asked, you can capture the question and answer it in that
section. Thus, optional sections can become a list of frequently asked questions (FAQs)
about the architecture that can be captured at a minimal cost.

• If a section's constituency includes both close-in and far-off constituents, try a combina-
tion of the approaches. Capture an FAQ list and convert it to a form more appropriate for
archival purposes as time and resources permit.

We conclude this section with four of Cockbum's recommendations for documentation [Cock-
bum 02, pg. 177]:

• Bear in mind that there will be other people coming after this design team, people who
will, indeed, need more design documentation.

• Run that as a parallel and resource-competing thread of the project instead of forcing it
into the linear path of the project's development process.

This process consists of three steps. First, construct a table listing the stakeholders for the documentation as the rows, and
the views that apply to the system as a column. Cells in the table designate whether a stakeholder needs to see a view in
great detail, in some detail, in overview only, or not at all. This produces a set of carididate views. Second, combine those
views in the candidate set that go well together. Third, prioritize and stage the remaining set as needed. The point of the
selection process is to reduce the number of candidate views—which is almost always too large to be produced, kept con-
sistent, and updated economically—to a manageable set. Getting the selected set of views requires the architect to not just
guess at the stakeholders' needs, but rather to interact with stakeholders to make sure that their interests are being repre-
sented.

A caveat has to do with design rationale. Design rationale is almost always aimed at subsequent architects or maintainers
to arm them with enough information to maintain the conceptual integrity of the system's design. Rationale, however, is not
a dish best sen/ed cold. Waiting to capture rationale until the project winds down will certainly lead to the omission of key
insights and thought patterns. Our advice is to capture rationale eariy and often.

10 CMU/SEI-2003-TN-023

• Be as inventive as possible about ways to reach the two goals adequately, dodging the
impracticalities of being perfect.

• Find...the methodology...just rigorous enough that the communication is actually suffi-
cient.

CMU/SEI-2003-TN-023 11

Conclusions

Agile development methods emphasize face-to-face communication over documentation.
However, the very projects for which architecture serves the most important function—large,
distributed, and long lived—are the projects for which face-to-face communication is the least
practical. Even those projects that are a good fit for an agile approach—small, concentrated,
and short lived—will benefit from carefully documenting the software architecture. In any
case, agile methods bring certain positive aspects to a project, principally including the con-
scious decision about whether to produce artifacts.

This report has proposed a method for capturing architectural information in a manner consis-
tent with agile philosophies. The method has, to our knowledge, not yet been applied in prac-

tice.

Both the V&B and agile approaches agree on one thing: Know why (and for whom) you are
producing documentation before you set out to do it. The result should be an artifact that
serves the needs of its constituency well and avoids superfluous effort and rework, thus mak-
ing the effort to produce it worthwhile.

,2 CMU/SEI-2003-TN-023

References
all URLS valid as of the publication date of this document

[Agile Alliance 02a]

[Agile Alliance 02b]

[Agile Alliance 02c]

[Bachmann 02a]

Agile Alliance. Manifesto for Agile Software Development.
<http://www.agilemanifesto.org/> (2002).

Agile Alliance, <http://www.agilealliance.org> (2002).

Agile Alliance. Principles Behind the Agile Manifesto.

<http://agilemanifesto.org/principles.html> (2002).

Bachmann, Felix; Bass, Len; Clements, Paul; Garlan, David;
Ivers, James; Little, Reed; Nord, Robert; & Stafford, Judith. Doc-
umenting Software Architecture: Documenting Behavior (CMU/
SEI-2002-TN-001, ADA339792). Pittsburgh, PA: Software Engi-
neering Institute, Carnegie Mellon University, 2002.

<http://www.sei.cmu.edu/publications/documents/02.reports
/02tn001.html>.

[Bachmann 02b] Bachmann, Felix; Bass, Len; Clements, Paul; Garlan, David;
Ivers, James; Little, Reed; Nord, Robert; & Stafford, Judith. Doc-

umenting Software Architecture: Documenting Interfaces (CMU/
SEI-2002-TN-015, ADA403788). Pittsburgh, PA: Software Engi-
neering Institute, Carnegie Mellon University, 2002.

<http://www.sei.cmu.edu/publications/documents/02.reports
/02tn015.html>.

[Bachmann 01] Bachmann, Felix; Bass, Len; Clements, Paul; Garlan, David;
Ivers, James; Little, Reed; Nord, Robert; & Stafford, Judith. Doc-
umenting Software Architectures: Organization of Documenta-
tion Package (CMU/SEI-2001-TN-OlO, ADA396052).
Pittsburgh, PA: Software Engineering Institute, Carnegie Mellon
University, 2001. <http://www.sei.cmu.edu/publications
/documents/01.reports/01tn010.html>.

CMU/SEI-2003-TN-023 13

[Bachmann 00]

[Beck 00]

[Clements 02]

[Cockburn 02]

[Cockburn 01]

[IEEE 00]

[Hofmeister 00]

[Kruchten 00]

[Parnas 01]

Bachmann, Felix; Bass, Len; Carriere, Jeromy; Clements, Paul;
Garlan, David; Ivers, James; Nord, Robert; & Little, Reed. Soft-
ware Architecture Documentation in Practice: Documenting
Architectural Layers (CMU/SEI-2000-SR-004, ADA377988).
Pittsburgh, PA: Software Engineering Institute, Carnegie Mellon
University, 2000. <http://www.sei.cmu.edu/publications

/documents/00.reports/00siO04.html>.

Beck, Kent. Extreme Programming Explained: Embrace Change.

Reading, MA: Addison-Wesley, 2000.

Clements, Paul; Bachmann, Felix; Bass, Len; Garian, David;
Ivers, James; Little, Reed; Nord, Robert; & Stafford, Judith. Doc-

umenting Software Architectures: Views and Beyond. Boston,

MA: Addison-Wesley, 2002.

Cockburn, Alistair. Agile Software Development. Boston, MA:

Addison-Wesley, 2002.

Cockburn, Alistair. Crystal Methodologies, <http://alistair.cock-

bum.us/crystal> (2001).

Institute of Electrical and Electronics Engineers. IEEE Recom-
mended Practice for Architectural Description of Software-Inten-

sive Systems (IEEE Std 1471-2000). Piscataway, NJ: IEEE
Computer Press, 2000.

Hofmeister, Christine; Nord, Robert; & Soni, Dilip. Applied Soft-
ware Architecture. Reading, MA: Addison-Wesley, 2000.

Kruchten, Philippe. The Rational Unified Process: An Introduc-
tion. 2nd ed. Reading, MA: Addison-Wesley, 2000.

Parnas, D. L. "On a 'Buzzword:' Hierarchical Structure," Ch. 8,
161-170. Software Fundamentals: Collected Papers by David L.
Parnas. Hoffman, D. M. & Weiss, D. M., eds. Boston, MA: Add-
ison-Wesley, 2001.

14 CMU/SEI-2003-TN-023

REPORT DOCUMENTATION PAGE Form Approved
OMB No. 0704-0188

Public reporting burden lor this collection of Information is estimated to average 1 hour per response, including the time lor reviewing instnjctions, searching existing data sources, gathering
and maintaining the data needed, and completing and reviewing the collection of information. Send comments reganJing this burden estimate or any other aspect of this collection of
infomiatlon, including suggestions lor reducing this burden, to Washington Headquarters Services, Directorate for infomnation Operations and Reports, 1215 Jefferson Davis Highway, Suite
1204, Arlington, VA 22202-4302, and to the Office of (Management and Budget, Paperworfi Reduction Project (0704-0188), Washington, DC 20503.

1. AGENCY USE ONLY (leave blank) 2. REPORT DATE

July 2003

3. REPORT TYPE AND DATES COVERED

Final

4. TITLE AND SUBTITLE

Documenting Software Architectures in an Agile World

5. FUNDING NUMBERS

F19628-00-C-0003

6. AUTHOR(S)

Paul Clennents, James Ivers, Reed Little, Robert Nord, Judith Stafford
7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

Software Engineering Institute
Carnegie Mellon University
Pittsburgh, PA 15213

8. PERFORMING ORGANIZATION
REPORT NUMBER

CMU/SEI-2003-TN-023

9. SPONSORING/MONrrORING AGENCY NAME(S) AND ADDRESS(ES)

HQ ESC/XPK
5 Egiin Street
Hanscom AFB, MA 01731-2116

10. SPONSORING/MONITORING
AGENCY REPORT NUMBER

11. SUPPLEMENTARY NOTES

12.a DISTRIBUTION/AVAILABIUTY STATEMENT

Unclassified/Unlimited, DTIC, NTIS
12.b DISTRIBUTION CODE

13. ABSTRACT (maximum 200 words)

This report compares the Software Engineering Institute's Views and Beyond approach for documenting
software architectures with the documentation philosophy embodied in agile software-development methods.
This report proposes an approach for capturing architecture information in a way that is consistent with agile
methods.

14. SUBJECT TERMS

software architecture, architecture documentation, architecture views,
agile methods

15. NUMBER OF PAGES

24
16. PRICE CODE

17. SECURITY CLASSIFICATION
OF REPORT

UNCLASSIFIED

18. SECURITY CLASSIFICATION
OF THIS PAGE

UNCLASSIFIED

19. SECURITY
CLASSIRCATION
OF ABSTRACT

UNCLASSIFIED

20. UMtfATION OF ABSTRACT

UL

H&HisAb-di-ibO-SiOo Standard Pomi i96 (Rev. 2-89)
Prew:rl»d by ANSI Std. Z39.18
29S-102

